skip to main content


Search for: All records

Creators/Authors contains: "Lisi, Peter J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adultAwaous stamineuswere freshwater residents (62% ofn = 316 in 2009, 83% ofn = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater‐resident versus ocean‐going larvae are plausible mechanisms for range‐wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes inA. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.

     
    more » « less
  2. Abstract

    Spatial and temporal variation in thermal conditions are important dimensions of aquatic landscapes, yet we do not understand how this heterogeneity will respond to climate change. Snowpack in many regions is declining but impacts on aquatic thermal regimes remain poorly understood. Our analyses of summer stream temperatures across a complex river basin in southwest Alaska show that loss of snowpack has disproportionate effects on water temperatures in streams that are cold under typical conditions, thereby homogenizing stream temperatures across the landscape during low snow conditions. Streams draining steep watersheds warmed from a summer average of 4–8°C between high and low snow years and became more responsive to variation in regional air temperature (as proxy for solar radiation), while streams draining flat watersheds changed negligibly. Our results suggest that conservation strategies for aquatic landscapes that focus on snow‐dominated cold‐water refugia may not be robust to future climate warming and changes in snowpack.

     
    more » « less
  3. River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. 
    more » « less